CALCULATION OF INTERACTION OF A TURBULENT
NEAR~WAKE BEHIND A STEP WITH A SUPERSONIC JET
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Existing computational methods {1-5] do not enable one to calculate complex flows behind
steps, accounting for nonuniformity of the incident supersonic flow and the effect of com-
pression and expansion waves arriving in the near-wake region. For example, computa-
tional methods based on the methods of [1] or [2] are used mainly in uniform supersonic
flow ahead of the base edge and, for the most part, cannot be used to calculate flow in
annular nozzles with irregular conditions. An exception is reference [6], which investi-
gated flow in an annular nozzle behind a cylindrical center-body. The present paper sug-
gests a method, based on references [7, 8] for calculating the base pressure behind two-
dimensional and three-dimensional steps, washed by a supersonic jet,

§1, We consider an approximate flow scheme in the base region behind a step, which provides for
typical interaction of a turbulent boundary layer with an external perfect flow (Fig. 1). Between sections 1
~ and 2 there is expansion of the flow, AS is the line of constant mass flow rate, and 8 is the critical pcint. The
dashed line indicates the boundary-layer edge., Immediately behind the body, between sections 2 and 3, there
is a constant-pressure separated region, so that flow interaction begins at some section 3. The interaction
of the viscous layers with the outer ideal flow (jet) was calculated using boundary-layer equations, Accord-
ing to [7], the following system of equations can be written for the interaction region:
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Here M is the Mach number at the edge of the boundary layer and g is the angle between the velocity vector
at the boundary-layer edge and the Ox axis. The first equation of (1.1) for the variation in displacement
thickness was obtained from a relation in [2], which takes into account mixing of the ideal part of the flow
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Fig. 2

into the boundary layer; the second equation is the momentum equation and the third connects the pressure-
gradient parameter for a compressible boundary layer with the pressure-gradient parameter for the incom-
pressible boundary layer. The ratios between the parameters of the incompressible turbulent layer H, H*,

T, A appearing in Eq, (1.1) in the flow region between sections SS and 4 (attached boundary layer, see Fig. 1)
were regarded as known and were chosen in the form of the relations H=H(A), I'=I" (H), H*=H* (H) givenin [7],

The quantity A varies from A =0 (zero-gradient flow) to Ag=0.1 (the value of the pressure-gradient
parameter A at the points of separation or reattachment of the boundary layer). For regions of separated
gradient flow with reverse flow, i.e., in the flow region between sections 3 and SS (see Fig. 1), the quantities
H and A are linked by the linear relation H=H;+10(Hg — Hg)A (0= A =Ag, H; is the shape factor for the in-
compressible boundary layer in the initial section where the boundary layer interacts with the external per-
fect flow), and we can put approximately I =0. The dependence of A* on M*, obtained by correlating experi-
mental results, was given in [7]. During the calculations, at each x step in integrating the system of equa-
tions (1.1), we determined the parameters M, 6%, 8** and found the momentum loss thickness 6**, Then the
additional boundary-layer parameters h, H, A, ', H*, h* were calculated, using Eqs. (1.1)-(1.3) and the re-
lationships given graphically in [7].

In defining the base region flow we consider interaction of the boundary layer with the external perfect
supersonic flow. For two-dimensional flow in equilibrium ahead of the base rim, we calculated the unbounded
perfect flow using the Prandtl—Meyer relation, which relates the angle of turn of the veloeity vector at the
edge of the boundary layer with the Mach number variation:

B = v(My) — v(M) + ;. (1.4)

With this relation we can close the problem [we have the unknowns M, d*, 8%* 8 and the three
differential equations in system (1.1) and Eq. (1.4)]. T the solution of the system of equations (1.1} in
conjunction with Eq. (1.4), the boundary layer affects the perfect flow and the perfect flow affects the bound-
ary layer. This kind of interaction of viscous and inviscid flows is typical of base region flow, For an axisym-
metric flow, to calculate the external perfect flow, i.e., to obtain the parameter 8, the method of characteris-
tics is used (see [7, 8]); this method is also appropriate when the flow field ahead of the base rim is nonuni-
form and contains compression and rarefaction waves.

Knowing the parameters M, &%, 8** g at the initial boundary-layer section 3, we can integrate the sys-
tem (1.1) up to the end section 4. The initial conditions for system (1.1) describing the flow interaction in
the near-wake behind the step, are determined from the condition that this flow should match the flow in the
constant-pressure mixing zone [7]. We denote the boundary-layer thickness, the displacement thickness, the
momentum loss thickness, the Mach number M, and the angle between the velocity vector at the edge of the
boundary layer and the OX axis ahead of the step by the symbols 4j, 6F, 6j*, My, 8;. Considering first two-
dimensional flow, we shall assume that at section 2, where we have the value 8,=v (M;)—v (M,) +8;, the bound-
ary layer startsupwithparameters M,, 6,, 6%, 6§*, We shall take the relations between the parameters & *

and 67* in the form [3] o
85 161" = f = (pyuM3)y/(01u M7)s

We now determine the parameters in the constant~-pressure zone, From the second equation of system
(1.1) we calculate the displacement thickness 6, and then, using the conditions for conservation of mass and
conservation of momentum in the constant-pressure zone, we determine the momentum loss thickness 0 *:

SL=(81+0)+ oz, 67 =8", ¢-=tgh, (M-=DM,). (1.5)

Matching of the interaction flow and the constant-pressure flow is accomplished through the condition that the
displacement thickness and the momentum loss thickness are kept constant at section 3:

85 = 834, O3m = 831e (1.6)
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These two relations are sufficient to determine the parameters 6%, and 63*, if the length of the constant-pres-
sure region x; is known. Calculating x; using the method of [4], we obtain, from Egs. (1.5) and (1.6), -

850 = (81 +b) +z5tgPy, 833 =181, May =M, Q.7

These equations give us initial boundary conditions for integrating the system (1.1). For an axisymmetric
flow the initial boundary conditions have the form

e .
85+ = (87 +1) + § tgBdz, &} =TLf81", Msy =M, (1.8)

Tor a uniform flow ahead of the base rim, the flow conditions on a flat plate or a cylindrical surface ;=0,
-A,=0,serve as final boundary conditions at section 4. In solving the boundary problem for the system of dif-
ferential equations (1.1) we integrate the system from section 3 to section 4 in the direction of the main flow;
here a "ranging™ method is used to choose a value of M, (or p,) such that the parameters ;=0 and A,=0 are
obtained at section 4.

As is shown experimentally [9], with a nonuniform flow ahead of the base rim, and also when there are
no expansion waves, the flow in the near-wake has the same features as in uniform flow, However, in this
case the end boundary conditions for the system (1.1) require supplementary information. We evaluate the
parameter f, at the end section of the interaction region (at section 4) for A,4=0. To do this we convert the
compressible boundary~layer equations to incompressible boundary layer form and write equations for the
zero~order and first-order moment of momentum at r,=const [4]:

dg** | 6+ U 2.

ﬁ+ﬁrf(y+2)=rﬁ, (1.9)

9**5—% _HEH ) “2”1“ —1) %:%%1 + H (H— 1) T2+ (H+1) (H2—1) (T2 (V/8) (1.10)
1]

(here T =1/pU3).
By substituting the value A,=0 into Eqs, (1.9) and (1.10), and taking into account the first equation of
system (1.1), we obtain

gbo— Tl A (g — 1 L)y (- b,

1
where b, — | (T4/T)?d(Y/6), 0<b,<<1.
0

By giving experimental value to the base pressure and calculating g; and g, (for M, =1.4-4}, we estimate
the parameter Bg= | B4/By] =0.03. The calculations show that the pressure distribution in the interaction region
is practically independent of Bl if Bgs 0.03. Therefore, for convenience we shall assume conditions of the
following form for the final boundary conditions for a nonuniform flow ahead of the base rim: g,=0and A;=0,
These boundary conditions coincide with the final boundary conditions with a uniform flow ahead of the step.

In calculating the base pressure behind the step using the method suggested one must first determine the
boundary-layer parameters before it separates, 6y, 6§, 6#*. Then we choose the value of M, in the constant-
pressure region (zero-order approximation) and calculate the parameters &*, 6**, and 8 at the beginning of
the interaction section 3, using Egs. (1.7) or (1.8) for a two~dimensional or an axisymmetric flow, respectively.
Thereafter we integrate the differential equations (1.1) up to the section where A =0. This section is assumed
to.be behind the final section 4. If B, =0, then a new value of M, is adopted, and so on {the "ranging" process)
until we obtain the value B, =0 with a given accuracy, The method allows us to calculate flow in the base region,
both with a uniform and a nonuniform flow ahead of the base rim, and also where there are expansion and com-~
pression waves arriving in the near-wake region. This method was used when the base support radius T, 64,

It is shown experimentally [4], that when the relative size of the base bracket r,/r; varies from zero to 0.3,

the base pressure varies very little (~5%). Therefore, for the case of no hase bracket we can use this method
and a relative size of r,/r;=<0,3. Calculation of the base pressure behind the truncated central body of an
annular nozzle was performed using the method suggested above and a base bracket size of r,/r;=0.3.

§2. We now examine the flow at the base region formed with a truncated central body in an annular
nozzle. Currently available publications [10, 11] deal mainly with numerical and experimental investigations -
of the design conditions for annular nozzles with a full-length central body. Irregular operation conditions
for an annular nozzle with a covered crank-type support and a full-length central body are considered in [12],
where a detailed experimental and theoretical investigation was made into flows where the external pressure
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Pe is greater than the pressure p, in the one-dimensional approximation from the ratio of the nozzle exit
section area to the throat area, Using the method of characteristics, one can calculate the flow inan annular
jet washing the central body., Here no density discontinuities arise in the jet and there are only compression
and expansion shock waves. The condition for minimum tofal losses, allowing for friction, equivalent weight,
and other factors reduces to the fact that in the actual conditions we are interested in practice in nozzles
with a truncated central body. The end of such a body is acted on by the base pressure, which in the general
case must improve the thrust characteristics of an annular nozzle,

Using the above method we calculated the base pressure behind a truncated central body for an annular
nozzle with a covered crank, at Mach number M, =3.71, The pressure ratio factor n varied from 0.1 to 0.6

M=p,/Pgs Pg =¥ Mgz)po).

We can compare the computations with the results of experiments performed by Vilenskii {12] in air,
where the characteristic dimensions of the annular nozzle were Ry=51 mm and [,/Ry=0.06, and the length of
the truncated central body varied in the range 1< I°<2,1 (I°=1/R,, and 1 is the length of the central body).
Figure 2 shows a flow picture in the annular jet washing a truncated central body. The rarefaction waves 1,
coming from the edge of the erank, are reflected from the surface of the central body and reach the jet bound-
ary, from which compression waves 2 are reflected. Thus, there is a complex flow between the body and the
jet boundary, containing both expansion waves and compression waves, This flow was calculated by the meth~
od of characteristics by Volkonskaya [12]. In order to caleulate the base pressure behind the truncated central
body of the annular nozzle (and also to calculate the flow in the jet after the flow turns behind the base rim),
we first used the method of [12] for each value of I’ and n, to calculate the flow ahead of the nozzle rim;and
from the pressure distribution on the central body, we used the method of [13] to find the characteristic bound-
ary-layer thicknesses 6f and 6f*. Then we calculated the flow in the base region, and in computing the outer
perfect flow (an ideal supersonic jet) we used the flow parameters on a characteristic of the first family com~
ing from a ray point on the base surface and reaching the jet boundary.

The results of the caleulations of the base pressure p, using this method for pressure ratio factors
n=0,148 and n=0,6 are shown in Fig. 3 (theoretical curves 3 and 4), and the experimental results are shown
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by points 1 and 2 for n=0.148 and 0.6, respectively. ¥ can be seen that the computations are in good agree-
ment with the experimental results. We note that perturbations of the outer flow (in this case they are ex-
pansion waves) have an appreciable influence on the flow, reducing the base pressure. If we calculate for
n=0.148 without accounting for these perturbations (e.g., using the method of [14] and the equivalent surface
and interpolation relations proposed there), the results (curve 5) are markedly different from the experi-
mental data. Tt should be noted that for 1=2,12 andn=0,148 a very weak expansion wave reaches the base
region, Therefore, the calculated curves 3 and 5 obtained with this method and the method of [14] are in
close agreement, For 1=1,1 and n=0,148 a strong expansion wave reaches the base region, the Mach num-
ber on the first family characteristic coming from a ray point on the base varies from M; =1.96 on the sur-
face of the central body to My=2.4 on the jet boundary, while the angle between the velocity vector and the
Ox axis varies from —14,5° to 0. This leads to an appreciable reduction of base pressure, The investiga-
tions which have been conducted (e.g., for n=0.6 and !°=1.5-2,1) show that the compression wave reaching
the base region increases the base pressure. As the strength of this wave increases the base pressurerises,
and for some intensity of the wave there comes a time when p’> 1. In this case a compression shock leaves
the edge of the base rim.

Since the computer program was not suitable for calculating flow with a compression shock, the calcu-
lation was carried out only for p?=1. The points 1 on Fig. 4 show the base pressure as a function of the
pressure ratio parameter n for 1=2.1 obtained experimentally. With variation in n the base pressurevaries
from 0.56 to 1.27, and the maxima in p’ are seen to be at n#0,13 and 0.6. For the range 0.12= n= 0,14, the
base pressure becomes greater than 1, Flow calculations made by means of the method of characteristics
ahead of the base rim [12] for this range of n (0.12=<n=0,14) show that a strong compression wave reaches
the base region, Figure 4 shows the results of our calculations (solid lines) for the region of values p’<1.
The calculations made show that the proposed method can be applied to determine the base pressure behind
a truncated central body of an annular nozzle with a covered crank,

§3. In some structures one can meet the case where the base pressure behind a two~dimensional step,
formed by structural elements, depends on the transverse size of the jet flowing above the step. We consider
flow in the base region behind a two-dimensional step, washed by a supersonic jet with a pressure ratio
factor n=p;/pe =1 (Fig. 5). Perturbations arise at the edge of the step as expansion waves are propagated
in the jet, reach the jet boundary, and, reflected as compression waves, arrive at the base region, affecting
the flow there., There is complex interaction between the turbulent wake and the outer supersonic jet. By’
writing the boundary conditions at the jet boundary, i.e., p,=pe =const, and using the above method, we can
calculate the base pressure. The results of calculations for M;=2, 8; =0, 6}*/b=0.02, and n=1 are shown
in Fig. 5, where B is the jet width, b is the step height, and p, is the pressure in the submerged space in
which the jet is flowing. In contrast with the calculations made in Sec. 2 for an annular jet with n=0,1-0.6
and 1°=1-2.2, and which yielded a unique solution to the problem, in the present case (for M;=2, n=1, b/B =
0.58-1.23) we obtain three solutions. Mthe regions 0<b/B<0.58 and 1.23<b/B< 3.33 a single solution is
found. With increase in the parameter b/B from 0 to 0.58 the base pressure remains constant and a change
in the jet width does not affect the flow in the base region. The reason is that the compression waves coming
from the jet boundary do not strike the near-wake region (2—3—4), With a variation of b/B in the range 1.25
to 3.33 the base pressure increases, and a compression wave reaches the interaction region behind the step,
causing an increase inbase pressure. For 0.58<b/B<1.25 there are three solutions (see Fig. 5, curves 1~3).
For the second solution no compression wave reaches the interaction region, and the length of the 2—-3—4
region is less than the length of this region corresponding to the second solution. The third solution is an
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intermediate case, where a compression wave from only a small part reaches the interaction zone in the
neighborhood of Sec, 4.

Thus, in a nonuniform flow containing compression and expansion waves, the interaction of a turbulent
wake with an outer supersonic stream (a supersonic jet) can have a more complex and nonunique character
than the interaction of a turbulent wake with an outer supersonic uniform unbounded flow,

NOTATION

x, y, longitudinal transverse coordinates; X, Y, transformed coordinates; 6, 6%, and 6**, thickness,
displacement thickness, and momentum thickness of the compressible boundary layer, respectively; ¢, 6%,
and 0 ** thickness, displacement thickness, and momentum thickness of the incompressible boundary layer, re-
spectively; u, U, velocity in the compressible and incompressible boundary layers; p, p', density of the com-
pressible and incompressible boundary layers; u, ©', dynamic viscosity ofthe compressible and incompressible
boundary layers; M, Mach number; p, pressure; a, sound speed; I, enthalpy; 7, friction stress; Pr, Prandtl
number; b, height of the step; r, r;, and r,, radius, radius of the base, and radius of the base bracket, respec-
tively; v, Prandtl—Meyer angle; £ =0, for two-dimensional flow; € =1, for axisymmetric flow. Indices: 0,
stagnation flow; 1, at the outer edge of the boundary layer or ahead of the step; 2, at the outer edge of the mix-
ing zone, immediately behind the step; w, parameters at the wall; +, inthe interactionregion;—, inthe constant-

pressure flow region; ,
ho= 8%/8%* ¥ = O*/8, h¥* = §%%/§, H = 0%/0%¥, H* = 0*/0,
) H#* = 0%%/6, n = cpley,

8* du 0¥ qU
— S 172 O P 3 —— 21
Tw = szlu%i Tw - F291U11 A2 = uy dz |’ A= Ul dx |t
%+ 1\1/2 w—1 1/2 —
v = (x __’_ 1) arctg (m (M2 — 1)) —aretg M2 —1, p° = palpy.
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